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Abstract. We present a formalism for high energy soft processes, mediated by Pomerons, which embodies
pion-loop insertions in the Pomeron trajectory, rescattering effects via a two-channel eikonal and high-
mass diffractive dissociation. It describes all the main features of the data throughout the ISR to Tevatron
energy interval. We give predictions for soft diffractive phenomena at the LHC energy, and we calculate
the different survival probabilities of rapidity gaps which occur in various diffractive processes.

1 Introduction

At high pp (or pp̄) collider energies about 40% of the to-
tal cross section σtot comes from diffractive processes, like
elastic scattering or single- or double-diffractive dissoci-
ation. Besides their interest in their own right, there are
several other practical reasons why it is important to study
diffractive processes. First, we need to understand the
structure of σtot and the nature of the underlying events
which accompany the sought-after rare hard processes.
Second, we must be able to estimate the probability that
rapidity gaps, which occur in diffractive events containing
a hard subprocess, survive rescattering effects — that is,
survive the population of the gaps by secondary particles
from the underlying event. Recall that ‘hard’ diffraction
processes are a means of suppressing the background, for
example, in searches for signals of New Physics. Thirdly,
studies of diffractive processes should help in understand-
ing the structure of high energy cosmic ray phenomena.
Finally, we wish to be able to reliably extrapolate the pp
elastic differential cross section dσel/dt to the optical point
t = 0 so as to make a luminosity measurement at the LHC.
Indeed the early low luminosity runs of the LHC should
provide a wealth of information on diffractive interactions
at small momentum transfer, which will enable asymptotic
(s → ∞) predictions to be severely tested. Such small-t
processes are generically called soft interactions.

The luminosity measurement is based on the optical
theorem (neglecting Coulomb effects)

dσel

dt

∣∣∣∣
t=0

=
σ2

tot

16π
(1 + ρ2). (1)

The ratio ρ of the real to the imaginary part of the elastic
amplitude is small at Tevatron and LHC energies (ρ ∼
0.1), and a dispersion relation estimate is sufficiently ac-
curate for ρ not to cause a problem. Thus if we measure

the number of events corresponding to the elastic and to
the total cross sections then we may determine both the
luminosity L and σtot (since Nel ∝ σ2

totL, whereas Ntot ∝
σtotL). The main difficulty is that, at the LHC, we will
have to extrapolate elastic data from, say, |t| >∼ 0.01 GeV2

to t = 0. It is found, from measurements at ISR, Spp̄S and
Tevatron energies, that the ‘local’ slope

B(t) =
d(ln dσel/dt)

dt
(2)

depends on t. The effect is not negligible. For example, at√
s = 53 GeV [1]

B(0) − B(|t| = 0.2 GeV2) 	 2 GeV−2. (3)

Here we will study such effects.
It is important to pay special attention to the periph-

ery of the proton, in impact parameter, bt, space. First,
large values of bt are responsible for the small t behaviour
of the amplitude. Second, the large bt region, where the
optical density (or opacity), Ω(bt), becomes small, gives
the major contribution to the survival probability of ra-
pidity gaps.

The outline of the paper is as follows. In Sect. 2 we
very briefly recall the role of the Pomeron in describ-
ing high energy soft interactions. Then in Sect. 3 we list
the essential ingredients to be embodied in a model for
the Pomeron. We present an old, but important, result
[2] which gives the effect of pion-loop insertions on the
Pomeron trajectory. Section 4 discusses the form of the
Pomeron-proton vertex and incorporates screening correc-
tions in the model. All the above effects leads to a t de-
pendence of the elastic slope parameter B of (2). For ped-
agogic reasons, it is informative to first attempt a prelim-
inary description of the pp total cross section and dσel/dt
data using a model which embodies the above effects but
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Fig. 1a–e. The Pomeron exchange contribution, graph a, to-
gether with unitarity corrections, graphs b–e, to the pp elastic
amplitude. Note that graphs (d, e) are the ‘square’ of the single-
and double-diffractive dissociation amplitudes respectively

which, for the moment, neglects the effects of high-mass
diffraction dissociation. The comparison of this incomplete
Pomeron model with the data is also described in Sect. 4.
Then in Sect. 5 we discuss the inclusion of diffractive dis-
sociation in the analysis. Section 6 presents the resulting,
much more complete, theoretical description of the data.
Predictions of soft phenomena at LHC energies are made.
Section 7 describes the calculation of the probabilities that
the rapidity gaps, which occur in various diffractive pro-
cesses, survive the effects of rescattering. Section 8 con-
tains our conclusions and summarises some of the predic-
tions for soft processes at the LHC.

2 The Pomeron

To introduce our approach, it is helpful to first briefly re-
call salient points in the long history of the description
of elastic and diffractive scattering at small momentum
transfer. The high energy behaviour of scattering ampli-
tudes in the small t domain is described by Regge theory
(see, for example, [3]), that is by the singularities of the
amplitudes in the complex angular momentum, j, plane.
The simplest possibility is to assume that, at high energy,
the diffractive processes are driven by an isolated pole at
j = α(t), which gives an elastic amplitude

A(s, t) ∝ sα(t), (4)

and a total cross section

σtot ∝ sα(0)−1. (5)

The pole with the largest intercept, originally with α(0) =
1, was called the Pomeron. Here we are interested in en-
ergies

√
s which are sufficiently large to be able to neglect

all secondary trajectories (with intercepts of α(0) <∼ 0.5).
The Pomeron is shown in Fig. 1a by the double line, which
is exchanged in the t-channel in pp elastic scattering.

However this description is too simplified. The imposi-
tion of s-channel unitarity generates multi-Pomeron cuts
from the pole in the j-plane. First, iterations of the pole
amplitude via elastic unitarity gives contributions of the
type shown in Fig. 1b. If we take account of the possibil-
ity of proton excitations (p→ N∗) in intermediate states,
then we must include contributions such as that in Fig. 1c.
Furthermore, the excitation into higher mass MX states
is described by the triple-Pomeron graph of Fig. 1d for
single diffractive dissociation (with cross section σSD) and
by Fig. 1e for double diffractive dissociation (σDD). In ad-
dition to Fig. 1d, there is an equal contribution σSD from

dissociation of the lower proton only. The contributions of
graphs 1(b–e) are not negligible. Indeed, from the AGK
cutting rules [4] we estimate the correction to Fig. 1a to
be

(σel + 2σSD + σDD)/σtot ∼ 0.4 (6)

at Tevatron/LHC energies, which is consistent with the
Tevatron data.

Of course, it is possible to consider an effective or phe-
nomenological ‘Pomeron’-pole amplitude which includes,
in an average sense, all the cuts shown in Figs. 1b–e. In-
deed, it has been demonstrated, by Donnachie and Land-
shoff [5], that a simple pole with trajectory

αeff(t) = 1.08 + 0.25 t (7)

(with t in GeV2) provides a good description of the to-
tal and elastic differential cross section data up to the
Tevatron energy. However in this case we cannot use the
‘Pomeron’ to calculate the survival probability S2 of the
rapidity gaps or the small t behaviour of the elastic slope
B(t) of (2). The survival probability S2 = 1−W 2 is small
since secondary particles produced in the inelastic interac-
tion fill the gap, with probabilityW 2. The difficulty is that
the effective ‘Pomeron’ describes a pp amplitude, with an
elastic and inelastic component, where the latter compo-
nent includes diffractive dissociation. Elastic rescattering
does not populate the gap and, unfortunately, the effective
‘pole’ picture does not quantify the size of the dissociation
component. Another problem of the effective pole descrip-
tion concerns the t (or bt) dependence of the elastic ampli-
tude. Each component of the elastic amplitude shown in
Fig. 1 has its own characteristic t dependence. For exam-
ple, if the amplitude for Fig. 1a has the form exp(B0t/2),
then the amplitude for the two-Pomeron part of Fig. 1b
has a flatter t dependence of the form exp(B0t/4). It was
discussed in [6] that the part of dσel/dt, which is gener-
ated via the optical theorem from diffractive dissociation,
should have a larger t-slope since it corresponds mainly
to the large bt or peripheral part of the interaction. These
effects are important in the computation of the t depen-
dence of the slope B of (2), as well as for the estimation
of survival probability S2.

3 Model for the Pomeron

Unfortunately, to our knowledge, no way has been found
to sum up all the Regge graphs and to solve Regge Field
Theory. Here we construct a model of the Pomeron which,
at the very least, accounts for the most important effects.
We incorporate

(i) s-channel unitarity with elastic and a low mass MX

intermediate state via a 2-channel eikonal approach
(using a representative effective low mass proton ex-
citation N∗),

(ii) high-mass MX single- and double-dissociation via
Figs. 1d and 1(e)1,

1 The data indicate that the “effective” triple-Pomeron ver-
tex (which already includes some absorptive corrections) is
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Fig. 2. A two pion-loop insertion in the Pomeron trajectory,
generated from the single loop by t-channel unitarity

(iii) the nearest t-channel singularity, that is the two-pion
loop.

In high energy ‘soft’ strong interactions we deal with
two different hadronic scales. One is given by the mass
of the pion and controls the periphery of the proton —
the so-called pion cloud — see (iii) above. Due to the
pseudo-Goldstone nature of the pion, this scale (mπ) is
rather small. For the same reason, pion exchange is not
the most important part of the interaction amplitude. At
small distances the interaction is controlled by a scalem ∼
1 GeV representative of the other hadron masses2.

Long ago, Anselm and Gribov [2] argued that the
Pomeron is built up from both the small and large scale
components. The large scale (small bt) component gives
the main contribution to the Pomeron, which may be de-
scribed by a simple bare pole with trajectory

α(t) = α(0) + α′t. (8)

The other component, the pion-loop insertions of the type
shown in Fig. 2, generated by t-channel unitarity, may
be treated as a correction. They are needed to describe
the large bt region. Following Anselm and Gribov [2], we
find that these pion-loop corrections modify the Pomeron
trajectory so as to give the non-linear form3

αIP (t) = α(0) + α′t +
β2

πm
2
π

32π3 h

(
4m2

π

|t|
)
, (9)

where

h(τ) = −4
τ
F 2

π (t)
[
2τ − (1 + τ)3/2 ln

(√
1 + τ + 1√
1 + τ − 1

)

+ ln
m2

m2
π

]
, (10)

with τ = 4m2
π/|t| andm = 1 GeV. The coefficient β2

π spec-
ifies the ππ total cross section, and Fπ(t) is the form factor
of the pion-Pomeron vertex. The coefficient β2

πm
2
π/32π

3 in
(9) is small, but due to the tiny scale mπ the t dependence
of h(τ) is steep and non-linear. It has an important effect

small, namely that the high energy Pomeron-proton and
proton-proton total cross sections satisfy σIPp/σpp ∼ 1/40 [7,
8]. Thus we anticipate that graphs that are higher order in the
triple-Pomeron vertex may be neglected.

2 In terms of QCD the scale m ∼ 1 GeV may be associated
with the ‘effective’ gluon mass or with the instanton size. Other
arguments in favour of a small gluon-gluon correlation length
∼ 0.3 fm (or scale ∼ 1 GeV) can be found in [9].

3 Note that in (10) we have corrected the misprint which
occurs in the published version of [2].

on the local slope B(t) of (2). In fact it was shown [2] that,
with a reasonable ππ total cross section, it can account for
at least half of the slope difference, (3), observed at ISR
energies.

For the results that we obtain below for the Pomeron
trajectory, αIP (t), it is important to note that expression
(10) for h(τ) has been renormalized [2], such that

h(τ) = hπ(τ) − hπ(t = 0) (11)

where hπ(τ) denotes the full pion-loop contribution. The
value of hπ(0) is determined by the region of t that is
controlled by the scale m. It therefoire causes an increase
of about 0.1 in α(0), depending on the exact slope of the
pion form factor, as we go from (8) to (9).

4 Results for the Pomeron — a first look

For simplicity we first compute the Pomeron assuming
that the effects of single- and double-diffractive dissocia-
tion are negligible. These diffractive effects are incorpo-
rated in the results presented in Sects. 5 and 6.

We start from the two-component bare Pomeron (asso-
ciated with hadronic scales m and mπ) that was discussed
above. Once the proton-Pomeron vertex V is specified,
the elastic pp amplitude is generated by the optical theo-
rem from the inelastic processes (Fig. 1a). From this bare
Pomeron we produce, via s-channel eikonalisation, both
elastic and inelastic pp interactions (see Fig. 1b). In prac-
tice we use a two-channel eikonal which allows us to simul-
taneously incorporate p → N∗ diffractive dissociation. In
this way we construct a Pomeron whose parameters may
be tuned to describe σtot and dσel/dt data throughout the
ISR to Tevatron energy range.

The parameters of the Pomeron are α(0), α′ of the tra-
jectory (9), and a1 and a2 of the elastic proton-Pomeron
vertex, which is taken to have the power-like form

V (p→ p) ≡ β(t) =
βp

(1 − t/a1)(1 − t/a2) , (12)

where β2
p specifies σtot. The power-like, rather than an ex-

ponential, form is motivated by the quark counting rules
and by dσel/dt data. The latter is particularly true at ISR
energies where multi-Pomeron effects are still reasonably
small — as mentioned above, the pion-loop insertions ac-
count for about one half of the variation of the local elastic
slope B(t) with t, at small t. The power-like form of (12)
is needed to account for the remaining change of B(t).

In addition to the above parameters, we also have to
specify

γ ≡ V (p→ N∗)
V (p→ p)

, (13)

which we take to be γ ∼ 0.4 in accordance with p →
N∗ dissociation observed at moderate energies [10]. We
use the additive quark model relation, βπ/βp = 2/3, to
determine βπ, and we take the form factor of the pion-
Pomeron vertex to have the form

Fπ(t) = 1/(1 − t/a2). (14)
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Fig. 3. Typical t dependence of the elastic slope B(t) of (2)
found in the model of the Pomeron introduced in Sect. 3. The
diffractive dip, arising from the destructive interference be-
tween the Pomeron pole and cut contributions, is located at
smaller −t for higher collider energies

√
s. The effect on B(t)

is seen from the dashed curves in Fig. 9. The inclusion of high-
mass diffraction in Sects. 5 and 6 modifies the behaviour of
B(t) in the dip region, again see Fig. 9

In summary, we have expressed the t dependence of the
elastic pp (or pp̄) differential cross section, dσel/dt, in the
form exp(Bt), and have argued that the slope B depends
on t, even for small t. Actually there are three sources of
the t dependence of the elastic slope B:

(i) the pion-loop insertions in the Pomeron trajectory,
(9),

(ii) the non-exponential form of the proton-Pomeron ver-
tex β(t) of (12),

(iii) the absorptive corrections, associated with eikonal-
ization, which lead to a dip in dσel/dt at |t| ∼ 1 GeV2,
whose position moves to smaller |t| as the collider en-
ergy,

√
s, increases.

The typical t structure of the slope B(t) is shown in Fig. 3.
The first two effects are responsible for the initial decrease
of the elastic slope as −t increases away from t = 0, while
the third effect produces a rapid growth of B as −t ap-
proaches the position of the diffractive minimum.

To account for s-channel unitarity, (iii), we use a two
channel (p,N∗) eikonal formalism [11], as described in Ap-
pendix A. For the opacity Ω(s, bt) we take the Fourier
transform of the Pomeron exchange amplitude

AIP (t) = β(t)2
(
s

s0

)αIP (t)

, (15)

where β(t) is given by (12) and αIP (t) by (9).

Fig. 4. The model descriptions of high energy pp (or pp̄)
total cross section data [12]. The continuous, dotted and
dashed curves correspond, respectively, to the minimal, max-
imal diffractive models and to the model of the Pomeron in
which high-mass diffraction is neglected. The discrepancy be-
tween the curves and the data at the lower ISR energies is
entirely due to our neglect of the (secondary) meson Regge
trajectories

We tune the Pomeron parameters α(0), α′ of (9) and
a1, a2 of (12) so as to describe the high energy pp (or
pp̄) σtot and dσel/dt data. The dashed curve in Fig. 4
shows the description of σtot. The dashed curves on Fig. 5
show the description of ISR and Tevatron elastic data,
together with the prediction at the LHC energy. From
Fig. 5 it is difficult to see the dependence of the local
elastic slope, B of (2), with t, though the lack of constancy
of B is clearly manifest in the ISR data. A much more
visible way to explore the t dependence of B is to plot the
ratio (dσel/dt)/ exp(Bexptt) versus t, where Bexpt is the
experimentally measured elastic slope at small t. In other
words we divide out the major part of the t dependence of
the data. Figures 6–8 display the elastic data in this way at
ISR, Spp̄S and Tevatron energies, together with the model
description (dashed curves). Although it is interesting to
note that this physically motivated model explains the
main features of the data, we delay the discussion of the
detailed structure until we have extended the model of
the Pomeron to allow for high-mass diffractive dissociation
(which produces the continuous curves in Figs. 4–8). The
parameters of the Pomeron corresponding to the dashed
curves are4

α(0) + α′t = 1.102 + 0.066 t ,
4 Note that if, instead of (12), we were to use a popular

parametrization for β(t), the best (but still not as detailed as



V.A. Khoze et al.: Soft diffraction and the elastic slope at Tevatron and LHC energies 171

Fig. 5. The data for dσel/dt versus |t| obtained at the ISR
[13] and at the Tevatron [14,15], compared with the Pomeron
model descriptions. The model predictions for dσel/dt at the
LHC energy are also shown. The curves are as described in
Fig. 4. (Note the inclusion of factors of 100 and 10 at the ISR
and Tevatron energies respectively)

Fig. 6. ISR data [13] for dσel/dt, with the experimental ex-
ponential form divided out, compared with the description of
models of the Pomeron with high-mass diffraction included
(continuous and dotted curves) and neglected (dashed curve).
The influence of the Coulomb interaction, which we neglect, is
evident in the data at very small t

Fig. 7. As for Fig. 6, but showing Spp̄S elastic data [16–18].
The most recent UA4 data [17] are unnormalized, and are plot-
ted higher for clarity. These latter data show evidence of the
Coulomb interaction at very small t, which lies outside our
analysis

Fig. 8. As for Fig. 6, but showing Tevatron elastic data [14,
15]
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a1 = 0.48 GeV2, a2 = 3.6 GeV2, (16)

with t in GeV2. Remarkably, after the pion-loop inser-
tions and eikonalization, (the ‘small-distance’ component
of) the Pomeron looks similar to a fixed pole at α(0) = 1;
recall that when hπ(0) of (11) is introduced, the bare pole
trajectory α(0) is decreased by about 0.1. The shrinkage
of the diffraction peak, which is conventionally described
by an effective trajectory (7) with α′ 	 0.25 GeV−2, ac-
tually is seen to have a dominant contribution from the
pion-loop insertions in the trajectory and from the eikonal
procedure. Moreover, the non-perturbative large distance
pion-loop contribution explains almost all of the value of

∆ ≡ αeff(0) − 1 	 0.08. (17)

Interestingly, the small-distance component of the
Pomeron5, with α(0) 	 1, is in agreement with the flat
input gluon distribution obtained at Q2 	 1 − 2 GeV2 in
the global parton analyses, see, for example, Fig. 1 in [21].

At first sight the values of the vertex parameters of
(16), with a1 � a2, look unusual. On the other hand, if
we recall the two-gluon structure of the dominant short-
distance component of the Pomeron, then the most likely
configuration is to share the momentum transfer between
two of the valence quarks of the proton. In such a case
we expect a pole form for the proton form factor with a1
of the order of the usual 0.71 GeV2 of the electromag-
netic dipole form factor. In fact, for such a quark-diquark
configuration we would anticipate that a1 was a little less
than 0.71 GeV2. However the price for such a configura-
tion is that the second gluon propagator is of the form
1/(m2 − t/4), where m ∼ 1 GeV is the effective gluon
mass. This gives a2 ∼ 4 GeV2. Thus the form of the ver-
tex, necessary to describe the data, has a natural physical
interpretation.

5 The Pomeron,
including diffractive dissociation

As we discussed in Sect. 2, diffractive dissociation is a non-
negligible part of the total cross section at high energies.
We therefore repeat the analysis of Sect. 4, but now in-
corporating the single- and double-diffractive dissociation
processes of Figs. 1d and e. We use the triple-Pomeron for-
malism, in which the single- and double-diffractive cross
sections are respectively

M2 dσSD

dtdM2 =
1

16π2 β
2(t)β(0)g3IP (t)

×
(
M2

s

)1+αIP (0)−2αIP (t)(
s

s0

)αIP (0)−1

(18)

(12)) description of the existing data is achieved by using the
proton Dirac form factor, F1(t), as proposed in [19].

5 This may possibly mean that for probes corresponding to
the scale Q2 � 1 − 2 GeV2 we have reached the black disk
limit, implying gluon saturation. Another possibility is that
this component is the two-gluon Pomeron discussed by Low
and Nussinov [20].

dσDD

dy1dy2dt
=

1
16π3 β

2(0)g23IP (t)

× exp ((1 + αIP (0) − 2αIP (t))∆y)

×
(
s

s0

)αIP (0)−1

(19)

where M ≡ MX , β(t) is the proton-Pomeron coupling of
(12), and g3IP is the triple-Pomeron vertex. The rapidity
difference∆y ≡ |y1−y2|, where y1 and y2 denote the edges
of the rapidity gap in the double dissociation process.

To be self-consistent we must use, in (18) and (19), the
final Pomeron amplitude, with all the screening effects in-
cluded. That is for each individual Pomeron line in the
diffractive dissociation diagrams of Figs. 1d,e we must use
the screened, rather than the bare, Pomeron. A good, and
simple, approximation for the screened Pomeron trajec-
tory is the effective trajectory of (7). In other words in the
diffractive contributions of (18) and (19) we approximate
αIP (t) by αeff(t) of (7). That is, we use α′ = 0.25 GeV−2

in (45), (47), (18) and (19).
We compute σSD and σDD by integrating over t, and

over the full available rapidity or M2 intervals, assum-
ing that the triple-Pomeron formalism is applicable for
∆y > 3 and M2 > 9 GeV2. The lower mass region is
already included in the two-channel eikonal calculation,
which incorporates the N∗ excitations.

Next we have to include the screening corrections to
the diffractive processes shown in Figs. 1d,e. The proce-
dure is described in Appendix B. Both the diffractive cross
sections, σSD and σDD, are given by (44), but with differ-
ent slopes given by (45) and (47) respectively. The crucial
parameter is the size of the triple-Pomeron coupling. We
choose the coupling, g3IP (0), to be in agreement with high-
mass single diffractive dissociation cross section measured
by the CDF collaboration, 2σSD = 7.4 ± 0.5 mb [22].

Due to the logarithmically large dM2/M2 or dy1dy2
intervals which become available with increasing energy,
the diffractive cross sections σSD and σDD increase rapidly,
and their contribution may exceed the inelastic contribu-
tion described by the Pomeron pole. In this domain the
corrections coming from higher order Reggeon graphs be-
come important. In [23] it was shown that the sum of a
subset of multi-Pomeron diagrams (the so-called ‘fan’ di-
agrams) have the effect of renormalizing the diffractive
dissociation contribution ΩD in the following way

ΩD(bt) → ΩD(bt)
1 + cΩD(bt)/ΩIP (bt)

, (20)

where exp(−ΩIP ) is the eikonal in the absence of (high-
mass) diffraction and ΩD(bt) is equal to the diffraction
cross section, (18) or (19), written in the impact param-
eter, bt, representation. That is, ΩD(bt) is the Fourier
transform of either (18) or (19) integrated over M2 and
screened by the two-channel eikonal with Ω = ΩIP (bt), as
described in Appendix B.

We stress that the above subset of multi-Pomeron dia-
grams is an incomplete summation6. If we choose c = 2 in

6 Another prescription was proposed in [24] in which a series
of multi-Pomeron vertices gnIP→mIP was considered, assuming
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(20) then we obtain eventual saturation of the diffractive
cross sections, with increasing

√
s, at the Pumplin bound

σD/σtot = 0.5 [26]. This choice may be considered as a
lower limit for high-mass diffractive effects. However the
Pumplin bound is not justified in the presence of high-
mass diffractive dissociation. So as the other extreme we
may set c = 0 in (20) and restrict ourselves to the sim-
plest single- and double-diffractive dissociation contribu-
tions of Figs. 1d and e. We will take these two choices of
higher-order g3IP contributions to demonstrate the range
of uncertainty arising from the introduction of diffractive
dissociation into the analysis. Diffractive dissociation be-
comes increasingly likely with increasing collider energy√
s, and so it is particularly important to investigate the

allowed range of the predictions at the LHC energy.
The c = 2 choice, which provides saturation of ΩD,

leads to smaller cross sections. We will call it the minimal
diffractive choice. The alternative c = 0 analysis, where
we neglect all g3IP higher-order multi-Pomeron graphs, we
call the maximal diffractive choice.

Finally, after ΩD has been screened by the two-channel
eikonal withΩIP , we have to add it toΩIP to obtain the full
eikonal for the elastic amplitude. For the two alternative
choices, c = 0 and c = 2 in (20), we use the resulting full
eikonals to calculate the real and imaginary parts of the
amplitude Ael and the diffractive cross sections σSD and
σDD, as described in the Appendices.

6 Description of soft diffraction
by the Pomeron

We are now able to extend the description of the σtot and
dσel/dt data, that we presented in Sect. 4, to include the
effects of (high-mass) diffractive dissociation. In compar-
ison to our ‘first look’ at the data, we now have two ex-
tra parameters: the triple-Pomeron coupling g3IP (0) and
its slope b′, see (46). We choose these parameters so as
to be in reasonable agreement with the data on single-
diffractive dissociation [22]. The data indicate that the
slope is very small and so we explore values in the small b′
domain. In the absence of screening, the data require [7,
8] g3IP (0)/β(0) ∼ 0.025−0.05, where, as usual, β(0) is the
proton-Pomeron coupling. However, after the rescatter-
ing effects are included, a much larger value of the triple-
Pomeron vertex is needed in order to describe the same
data, namely

g3IP (0)/β(0) 	 0.25 or 0.15, (21)

according to whether the minimal (c = 2) or maximal
(c = 0) diffraction dissociation model is adopted.

We tune all six parameters (α(0), α′, a1, a2 of (9) and
(12), together with g3IP (0) and b′) to describe the σtot
and dσel/dt data. The values of the first four do not differ
appreciably from those obtained in the simplified model

specific analytic forms for the n and m dependences; see also
[25]. Qualitatively, this prescription produces more or less the
same saturation of the diffractive cross section.

of Sect. 4, in which high-mass diffraction was neglected.
For the minimal diffractive model we obtain

α(0) + α′t = 1.103 + 0.00 t , (22)

a1 = 0.47 GeV2, a2 = 2.6 GeV2, (23)

as compared to the values in (16). Essentially the same
values of these parameters are obtained in the maximal
diffractive model (but with a2 = 2.4 GeV2). The two
models really only differ in the values of the diffractive
parameters. The triple-Pomeron coupling is given by (21)
and the slope b′ = 0 or 1 GeV−2 according to whether we
use the minimal or maximal diffractive model.

Again the agreement with the σtot and dσel/dt data is
good throughout the ISR to Tevatron energy range. The
continuous and dotted curves in Figs. 4–8 show the de-
scription obtained if diffractive dissociation is included us-
ing the minimal and maximal models respectively. Recall
that after dividing by exp(Bexptt), where Bexpt is the ex-
perimental slope at small t, Figs. 6–8 display very fine de-
tail of the structure of the elastic differential cross section.
It is remarkable that, with a minimal number of physically
motivated parameters, the Pomeron is able to describe all
the essential features of the data throughout the ISR to
Tevatron energy interval.

The two models have, by definition, differing amounts
of diffractive dissociation. The cross section for high-mass
single-diffractive dissociation at

√
s = 1.8 TeV is

2σSD = 5.3 or 8.0 mb (24)

in the minimal and maximal models respectively, as com-
pared to the experimental value of 7.4±0.5 mb [22]. In fact
it was not possible to reach the observed value of σSD us-
ing the minimal model with diffractive dissociation which
saturates at the Pumplin bound. From this viewpoint we
see that the two models should give a realistic, if gener-
ous, guide to the uncertainties associated with the effects
of including diffractive dissociation.

The influence of diffractive dissociation is rather small
at ISR energies, but it increases to given an appreciable
effect at Tevatron and LHC energies. It can be seen from
Fig. 9 that diffractive dissociation enlarges the spatial ex-
tent of the interaction and, as a consequence, increases
the value of the elastic slope B. This is particularly true
at LHC energies where there are, as yet, no data. At lower
energies the potential change in the value ofB is somewhat
compensated in that we have to tune the parameters of
the model to describe the same data. Differences occur in
the predictions of the minimal and maximal models when
we extrapolate beyond the available data — compare the
continuous and dotted curves for σtot in Fig. 4 and, again,
for ReAel/ImAel in Fig. 10a.

The derivative dB/dt at t = 0 becomes smaller as
√
s

increases, reaching approximately zero at LHC energies,
see Fig. 9. For the maximal choice of diffractive dissocia-
tion, where the change induced is larger, it even alters the
sign of dB/dt at t = 0 at

√
s = 14 TeV. It is interesting to

note that the pion-loop insertions into the bare Pomeron
trajectory leads to a change of slope

∆B ≡ B(0) − B(t = −0.2 GeV2) (25)
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Fig. 9a–d. The model predictions for the t dependence of
the local elastic slope, (2), at pp (or pp̄) collider energies of
a 62.5 GeV, b 546 GeV, c 1.8 TeV and d 14 TeV. The con-
tinuous, dotted and dashed curves correspond, respectively, to
the minimal, maximal diffractive models and to the model of
the Pomeron in which high-mass diffraction is neglected. The
modification of B(t) near the diffractive minimum, due to the
inclusion of high-mass diffraction, increases with

√
s, reflecting

the growth of this diffractive component

which increases with
√
s, and which reaches a value ∆B =

1.3 GeV−2 at the LHC energy. When, in addition, the
Pomeron-proton form factor (12) is used (rather than an
exponential form) then the difference ∆B increases to
3.8 GeV−2. However these effects are masked by the in-
clusion of rescattering corrections so that, finally, by co-
incidence, ∆B 	 −0.5 GeV−2 for all models at the LHC
energy, see Fig. 9d.

A ‘good message’ is that the inclusion of diffractive dis-
sociation suppresses the growth of B(t) as the diffractive
dip is approached. The steep rise of the dashed curves, due
to the cancellation between the Pomeron pole and cut con-
tributions, is affected by the interplay with the diffractive
amplitudes, which have their own interference producing
a minimum at a different t value. Thanks to this effect, we
predict only a small variation of the local elastic slope in
the |t| < 0.1 GeV2 domain at LHC energies, see Fig. 9d.

In Fig. 10a we show the energy dependence of the ra-
tio of the real to the imaginary part of the elastic ampli-
tude. We emphasize that we consider only even-signature
Pomeron amplitudes, and that we have neglected odd-
signature odderon exchange. Little is known about the
strength of the odderon, however it could increase the real
part of the pp̄ amplitude measured by the UA4 collabora-
tion [17] such that ReAel/ImAel increases by up to 0.01.

Fig. 10. a The predictions for the real to imaginary ratio
of the pp (or pp̄) elastic amplitude Ael, compared to the UA4
measurement [17]. The curves are as described in Fig. 9. b The
total single-diffractive cross section including the N∗ excitation
contribution (which is also plotted separately). c The double-
diffractive cross section including the very small N∗N∗ exci-
tation contribution (which is plotted separately, multiplied by
10). d The prediction for the fraction of σtot that is diffractive
compared to the Pumplin bound (dashed line)

Correspondingly, the prediction for pp elastic scattering
would decrease.

Figure 10b shows the energy dependence of the total
single-diffractive dissociation cross section 2σSD, which
also includes the N∗ excitation contribution. The factor
of 2 allows for diffraction of either the target or the beam
proton. In a similar way, in Fig. 10c we show the double-
diffractive dissociation cross section, together with its
N∗N∗ component. Finally, in Fig. 10d we present the ratio
of the total diffractive cross section to σtot, showing the
approach to the Pumplin bound with increasing energy.

7 Survival probabilities of rapidity gaps

Our approach allows the calculation of the survival prob-
abilities of the rapidity gaps which feature in the various
diffractive processes. The rapidity gaps, which naturally
occur whenever we have (colourless) Pomeron exchange,
tend to get populated by secondary particles from the
underlying event. Since, here, we have incorporated the
effects of rescattering in some detail, we are able to cal-
culate the survival probabilities S2 of the gaps. There has
recently been much interest in the size of S2 [27,28], be-
cause of the possibility of extracting New Physics from



V.A. Khoze et al.: Soft diffraction and the elastic slope at Tevatron and LHC energies 175

SD
(FPS)

SD
(cal)

CD
(FPS)

CD
(cal)

DD

Fig. 11. The survival probability S2 of the rapidity gaps (as-
sociated with the Pomeron, shown by the double vertical line)
is calculated for these five diffractive processes. SD, CD, DD
denote single, ‘central’ and double diffraction. FPS or cal de-
note ‘forward proton spectrometer’ or ‘calorimeter’, and cor-
respond, respectively, to the detection of isolated protons, or
to events where the leading baryon is either a proton or a N∗

(shown symbolically as two lines emerging from the vertex)

hard diffractive processes in an almost background-free
environment and, from a theoretical viewpoint, because
of its reliance on subtle QCD techniques.

Again, it is convenient to work in impact parameter,
bt, space. Let M(s, bt) be the amplitude of the particular
diffractive process of interest. Then the probability that
there is no extra inelastic interaction is

S2 =
∫ |M(s, bt)|2 e−Ω(bt) d2bt∫ M(s, bt)|2 Nd2bt , (26)

where, as usual, Ω is the opacity (or optical density) of
the interaction7. The normalizing factor N = exp(−Ω0),
where Ω0 denotes the relevant opacity ((48)–(52)) evalu-
ated at Ω = 0. The opacity Ω(bt) reaches a maximum
in the centre of the proton and becomes small in the
periphery. Therefore the survival probability S2 depends
strongly on the spatial distribution of the constituents of
the relevant subprocess. As examples we consider single
and double rapidity gap processes, assuming that the spa-
tial (bt) distribution is controlled by the slope8 b of the
Pomeron-proton vertex (β(t) ∝ exp(bt)), and that there
is no shrinkage coming from the Pomeron amplitude asso-
ciated with the gap(s). This is the case for hard diffractive
subprocesses9.

7 For simplicity we first discuss the simple one-channel
eikonal approximation. The exact formulas for the two-channel
eikonal are given in the Appendices.

8 Here we again approximate (12) by an exponential form,
see also (46).

9 The amplitude which generates a large rapidity gap in a
hard diffractive process is not the same as that for soft diffrac-
tion. It selects the small size component of the Pomeron, which
has a negligible value of α′. For instance, the diffractive central
production of a Higgs boson or high-ET dijets or diffractive
heavy vector meson production, are all hard diffractive pro-
cesses that are driven by the skewed gluon distribution which
is evolved from an input scale Q0 ∼ m up to the hard scale,
µH , characteristic of the diffractive process. Therefore it can
be shown [29] that α′ ∼ αS/µ2, where µ is the running evolu-
tion scale. During the evolution µ increases up to µH , and so,
at leading order, we have α′ � 0.

Table 1. The survival probabilities S2 of rapidity gaps in sin-
gle, central, double diffractive processes at Spp̄S, Tevatron and
LHC energies calculated using the minimal diffractive dissocia-
tion model of the Pomeron. The processes are shown in Fig. 11.

Survival probability S2 for:√
s 2b SD SD CD CD DD

(TeV) (GeV−2) (FPS) (cal) (FPS) (cal)

4.0 0.14 0.13 0.07 0.06 0.20
0.54 5.5 0.20 0.18 0.11 0.09 0.26

7.58 0.27 0.25 0.16 0.14 0.34

4.0 0.10 0.09 0.05 0.04 0.15
1.8 5.5 0.15 0.14 0.08 0.06 0.21

8.47 0.24 0.23 0.14 0.12 0.32

4.0 0.06 0.05 0.02 0.02 0.10
14 5.5 0.09 0.09 0.04 0.03 0.15

10.07 0.21 0.20 0.11 0.09 0.29

We calculate the survival probability S2 for three il-
lustrative values of the slope 2b of the diffractive inclusive
cross sections10:

(i) 2b = 4 GeV−2, in agreement with our parametriza-
tion of the Pomeron-proton vertex (compare (12) and
(23) with (46)),

(ii) 2b = 5.5 GeV−2, which corresponds to the slope of
the electromagnetic proton form factor,

(iii) 2b = B/2, which is the elastic slope at the corre-
sponding energy.

Moreover we calculate S2 for five different diffractive pro-
cesses. We consider single- and double-diffractive dissocia-
tion (SD, DD), and a process which may be called central
diffraction (CD), that is a centrally produced stateX with
rapidity gaps on either side. For both SD and CD we con-
sider two possibilities: first with N∗ excitation permitted
(relevant to a forward calorimeter experiment, denoted
cal) and, second, without N∗ excitation (relevant to a for-
ward proton spectrometer measurement, denoted FPS).
The five diffractive processes are sketched in Fig. 11. The
bt dependences of the single- and double-diffractive disso-
ciation amplitudes can be found in Appendix B. We find

|M|2 ∝ exp(−b2t/nb) (27)

where n = 6, 8 and 4 for SD, DD and CD respectively.
Thus double-diffraction has the largest spatial extent.

In practice we use the full two-channel expressions for
the screening factors, which are collected together in (48)–
(52) of Appendix B. Using these screening factors in (26),
together with the appropriate amplitudes, we find the gap
survival probabilities S2 that are shown in Table 1.

There are several comments relevant to the survival
probabilities listed in Table 1. First, we see that the re-
sults with and without the detection of the N∗ excitations
10 Note that the t dependence of the leading proton is given
by dσ/dM2dt ∝ exp(2bt), see (18).
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are very similar. Second, we see that the double-diffractive
process, with a single rapidity gap in the central region,
has the largest chance that the gap survives the rescat-
tering, due to the wider spatial distribution of the basic
process (see (27) with n = 8). Third, the gap survival
probability S2 decreases with

√
s due to the growth of the

opacity, but increases with the slope b as then a larger
part of the basic subprocess extends to the periphery of
the interaction. Fourth, we find that the survival proba-
bilities listed in the Table are essentially unchanged if we
use the maximal diffractive model, or even if we revert
to the simple model of the Pomeron in which large mass
diffraction is neglected. Recall that the parameters of all
models are tuned to the same data, so major differences
in the predictions are compensated.

The fifth comment concerns the calculation of S2 for
single-diffractive dissociation. Here we do not use the
whole opacity ΩIP +2ΩSD+ΩDD, but rather ΩIP +ΩSD+
ΩDD. In this way we avoid single-diffractive dissociation
which has a gap at the same location as that occurring
in the diffractive process of interest. However it is worth
noting that this subtle correction only gives a 5% enhance-
ment in the predictions for S2.

The sixth comment is that central diffractive processes,
with two rapidity gaps, have the smallest survival prob-
abilities. The predictions S2 = 0.08 at the Tevatron and
S2 = 0.04 at the LHC, for b = 5.5 GeV−2, are in agree-
ment with our previous estimates [28] based on a more
simplified model. The earlier work did not use a two-
channel eikonal formalism to account for N∗ excitations
(but instead used a simplified excitation factor). Nor did it
include pion-loop insertions or allow for high-mass diffrac-
tive processes. Nevertheless the stability of the predictions
for S2 is encouraging, and we expect the values given in
Table 1 to be reliable estimates of the effects of rescatter-
ing.

8 Conclusions

We have constructed a formalism that incorporates all the
main features of high energy soft diffraction. First, we ac-
count for the nearest singularity produced by t-channel
unitarity by including the pion-loop contributions in the
bare Pomeron pole. In this way we correctly reproduce
the behaviour of the diffractive amplitudes at large bt, in
the peripheral region of the interaction. Second, we use
a two-channel eikonal to include the Pomeron cuts gen-
erated by elastic and quasi-elastic (with N∗ intermediate
states) s-channel unitarity. Finally, we incorporate high-
mass diffractive dissociation in the whole procedure. To
the best of our knowledge, no model has attempted to
include all these effects simultaneously.

The model may be used to predict all soft diffrac-
tive processes at LHC energies. The main uncertainty is
the size of diffractive dissociation. We consider two phys-
ically motivated extremes, which we called the minimal
and maximal diffractive models, giving lower and upper
bounds for the cross sections. At

√
s = 14 TeV we predict

a total pp cross section in the range

σtot = 99.1 − 104.5 mb, (28)

and a pp elastic differential cross section at t = 0

dσel

dt
= 506 − 564 mb/GeV2, (29)

with a slope, at t = 0, of

B(0) = 20.3 − 21.9 GeV−2. (30)

Also we find that the ratio of the real to the imaginary
part of the elastic amplitude should lie in the range

ReAel/ImAel = 0.10 − 0.12, (31)

at
√
s = 14 TeV. For the single- and double-diffractive

dissociation cross sections we predict

2σSD = 9.4 − 15.4 mb .
σDD 	 9.5 mb, (32)

which include N∗ excitation contributions of 2.3 and
0.1mb respectively.

We are also able to make reliable predictions for the
probability S2 that the large rapidity gaps (which char-
acterise diffraction) survive the soft rescattering correc-
tions, that is survive the population of the gap by sec-
ondary particles from the underlying event. These prob-
abilities decrease with collider energy due to the growth
of the opacity Ω of the interaction. Moreover they de-
pend on the particular diffractive interaction of interest
and on the configuration of the rapidity gaps (as demon-
strated by Table 1 and Fig. 11). For example, for double-
diffractive central Higgs production via WW fusion we
predict S2 = 0.08(0.04) at Tevatron (LHC) energies. Since
the W boson, like the photon, is radiated from a quark,
it is natural to choose the slope 2b in Table 1 to be that
of the electromagnetic form factor, 2b = 5.5 GeV−2. On
the other hand for the production of a Higgs by Pomeron-
Pomeron fusion it is natural to choose 2b = 4 GeV−2, con-
sistent with our Pomeron-proton vertex. In this case the
depletion S2 = 0.05(0.02) at Tevatron (LHC) energies.

It is interesting to note that, after all the effects (pion-
loop, rescattering, diffractive dissociation) are simultane-
ously included, the pp σtot and dσel/dt data require both
∆ ≡ α(0) − 1 and α′ to be essentially zero for the bare
Pomeron pole. Diffractive dissociation is more important
in the periphery of the interaction and has the effect of
“eating up” α′ as can be seen by comparing α′ =
0.07 GeV−2 of (16), obtained with the simplified model,
with the value α′ 	 0 of (22) when diffraction dissociation
is included. Recall that soft processes are driven by two
scales — the pseudo-Goldstone mπ scale and the normal
hadronic scale m ∼ 1 GeV. The interactions driven by
the larger scale m should link up with perturbative QCD.
Indeed we obtain α(0) 	 1 for the small-size component
of the Pomeron, in agreement with the flat gluon distri-
bution obtained in global analyses for Q2 	 2 GeV2. The
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non-perturbative large-size component, arising from the
pion-loop insertions, then shifts the Pomeron trajectory
from α(0) 	 1 to αIP (0) 	 1.1.

As mentioned above, the main uncertainty is in the
treatment of diffractive dissociation. The two extreme
treatments give results shown by the continuous and dot-
ted curves in Figs. 4–10. The values of σtot and dσel/dt
are in agreement with results of simpler models [30], which
account only for elastic s-channel unitarity. The major
reason for the agreement is that the parameters of the
models are tuned to describe the same data. It was shown
in [24] that the introduction of diffractive dissociation can,
to a large extent, be compensated by the renormalization
of the parameters of the bare Pomeron. (Indeed it is in-
teresting to note that the original predictions of [24] for
σtot, B and σSD are in excellent agreement with those
of our maximal diffraction model.) However the contribu-
tion of diffractive dissociation is not negligible and reveals
itself in the ‘shoulder’ seen in ReAel/ImAel of Fig. 10a
and in the extra curvature in Fig. 10d, using the minimal
model which satisfies the Pumplin bound. From this point
of view, it is possible that at the LHC we will enter a new
domain in the high energy behaviour of soft diffraction.
Either high-mass diffractive dissociation will saturate at
the Pumplin bound, or it will continue to increase with
the interaction dominantly occurring in the peripheral re-
gion, originating from processes with many rapidity gaps.
Recall that the Pumplin bound is not justified in the pres-
ence of high-mass diffractive dissociation.

Of course, for any model with Pomeron cuts or driven
by more than one Regge pole, we should not expect factor-
ization. However, as has been known for a long time [23],
if, by chance, approximate factorization should occur at
some high energy, then it will be valid over a rather large
energy interval on account of the ‘flat’ energy behaviour
of the amplitudes.

Here we have considered only the positive signature
contributions and have neglected odderon exchange. The
normalisation of the odderon contribution is unknown.
However it is described by three, or more, gluon exchange,
and so a flatter t dependence is expected for this ampli-
tude. It could well reveal itself for |t| >∼ 0.5 GeV2.

In conclusion, we have constructed a formalism for soft
interactions, driven by the Pomeron, that embodies all the
major physical effects. We therefore believe that it should
give reliable predictions for all soft diffractive phenomena
at the LHC, at least in the |t| <∼ 0.5 GeV2 domain.
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Appendix A: the two-channel eikonal

In this work we have used a two-channel eikonal [11] in
which, besides the elastic proton channel, we allow proton
excitation N∗ to be a possible intermediate state in pp
elastic scattering, as in Fig. 1c. This effective N∗ channel
describes the sum of low mass diffractive proton excita-
tions. For the various p and N∗ couplings to the Pomeron
we take a common11 t dependence of the form of (12), but
with

βp →
(
β(p→ p) β(p→ N∗)
β(N∗ → p) β(N∗ → N∗)

)

	 β(p→ p)

(
1 γ
γ 1

)
(33)

where γ is given by (13). That is we assume that pp and
N∗N∗ interactions have the same cross sections, as sug-
gested by the additive quark model. Indeed Gribov [31]
has argued that all hadrons have the same elastic interac-
tion with the bare Pomeron and, moreover, he predicted
that γ is small due to the orthogonality of the quark wave
functions of the p and N∗. Of course, the Pomeron inter-
action produces some distortion of the original form of the
baryon wave functions, giving γ �= 0.

We see that the eigenvalues of the above two-channel
vertex are 1±γ. Now each amplitude has two vertices and
so, for example, the total and elastic pp cross sections,

σtot = 2
∫
d2bt Ael(bt)

σel =
∫
d2bt |Ael(bt)|2, (34)

are controlled by an elastic amplitude, Ael, with three dif-
ferent exponents

ImAel(bt) =
[
1 − 1

4
e−(1+γ)2Ω/2 − 1

2
e−(1−γ2)Ω/2

−1
4
e−(1−γ)2Ω/2

]
. (35)

As usual, Ω ≡ Ω(s, bt) is the optical density (or opac-
ity) of the interaction. Similarly, the single- and double-
excitation amplitudes are given by

ImA(pp→ N∗p) =
1
4

[
e−(1−γ)2 Ω/2 − e−(1+γ)2 Ω/2

]
ImA(pp→ N∗N∗) =

1
4

[
e−(1−γ)2 Ω/2 − 2 e−(1−γ2) Ω/2

+ e−(1+γ)2 Ω/2
]
. (36)

The opacity is chosen to be real, and the real parts of the
amplitudes are calculated from

ReA
ImA

= tan
(
πλ

2

)
(37)

11 So as to keep the number of parameters minimal.
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q - k q+k′
k k′

Fig. 12. Screening corrections to the triple-Pomeron diagram
of Fig. 1d

where

λ =
∂ ln(ImA)
∂ ln s

. (38)

This is a simple way of implementing the dispersion rela-
tion determination of the real part of the amplitude.

For the case of one-channel (pure elastic) rescattering
we have γ = 0, and hence

ImAel = [1 − e−Ω/2]. (39)

Just for illustration, assume that we have an effective
Pomeron with a linear trajectory

αeff(t) = 1 + ∆ + α′t, (40)

and a vertex with exponential t dependence of the form
βp exp(B0t/4), corresponding to an elastic slope B0. Then
the opacity

Ω(s, bt) =
β2

p(s/s0)
∆

4πBP
e−b2t /4BP , (41)

where the slope of the Pomeron amplitude is

BP =
1
2
B0 + α′ ln(s/s0). (42)

In the calculations presented in this paper we do not use
the above simple exponential form leading to the opacity
of (41), but rather the opacity obtained from the numeri-
cal Fourier transform of the Pomeron exchange amplitude
of (15).

Appendix B: screening effects
in diffractive dissociation

Here we describe how to calculate the screening correc-
tions to the single- and double- diffractive processes shown
in Figs. 1d,e. For single diffraction, for example, we need
to compute the eikonal rescattering effects indicated by
the blobs with momentum transfer k and k′ in Fig. 12. It
is most convenient to work in impact parameter bt space.

For simplicity we assume an exponential form for the
‘t’ dependences of the vertices. For example, for the single-
diffractive process of Fig. 12 we assume that the un-
screened amplitude squared has the form

exp
[−C(k + q)2 − C(k′ − q)2 − C ′(k + k′)2

]
. (43)

Using this form, the cross section is evaluated to be

σSD =
σSD(0)

4C(2C ′ + C)

∫
e−Ω exp

(
− b2t

4C ′ + 2C

)
db2t

(44)
where we have included the (single-channel) eikonal
screening effect exp(−Ω). σSD(0) is the single-diffractive
differential cross section evaluated at t = 0 (in the absence
of screening). The slopes are

C ′ = b+ b′ + α′ ln(M2/s0)
C = b+ b′ + α′ ln

(
s/M2)

)
, (45)

where b and b′ are the slopes of the proton-Pomeron and
triple-Pomeron vertices respectively, that is

β(t) ∝ ebt, g3IP (t) ∝ eb
′t. (46)

The double diffractive cross section σDD has an identical
form to (44), except that now we have σDD(0) and different
slopes

C ′ = 2b+ 2b′ + α′
(
ln
s

s0
−∆y

)
,

C = 2b′ + α′ ∆y. (47)

We take the slope of the proton-Pomeron vertex to be
b = 2 GeV−2, which well approximates the form given
by (12) and (23). The data indicate that the slope of the
triple-Pomeron vertex is very small.

The screening factor exp(−Ω) in the two-channel
(p,N∗) eikonal model becomes, for single-diffraction,

e−Ω → 1
4

{
(1 + γ)3e−(1+γ)2Ω + (1 − γ)3e−(1−γ)2Ω

+ 2(1 − γ2)e−(1−γ2)Ω
}
, (48)

and for double-diffraction

e−Ω → 1
4

{
(1 + γ)2e−(1+γ)2Ω + (1 − γ)2e−(1−γ)2Ω

+ 2(1 − γ2)e−(1−γ2)Ω
}
, (49)

where γ is given by (13). These structures incorporate the
interference of the eigenvectors p ± N∗ with absorptive
cross sections proportional to 1 ± γ. In the case of single
diffraction, (48) includes the possibility of the p → N∗
transition for the fast (i.e. lower) proton in Fig. 12.

In Sect. 7 we calculate the chance that the rapidity
gaps occuring in five different diffractive processes sur-
vive after the rescattering effects are included. The five
processes are shown in Fig. 11. We therefore need five
different screening factors. The factors (48) and (49) cor-
respond to two of the processes, namely SD(cal) and DD
respectively. For single-diffractive dissociation in which an
isolated proton is detected using a forward proton spec-
trometer, SD(FPS), we have

e−Ω → 1
8

{
(1 + γ)

[
(1 + γ) e−(1+γ)2 Ω/2
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+ (1 − γ) e−(1−γ2) Ω/2
]2

+ (1 − γ)

×
[
(1 − γ) e−(1−γ)2 Ω/2

+ (1 + γ) e−(1−γ2) Ω/2
]2}

. (50)

For central diffraction with the detection of isolated pro-
tons, which we denoted CD(FPS), we have

e−Ω → 1
16

{
(1 + γ)2 e−(1+γ)2 Ω/2 + (1 − γ)2

×e−(1−γ)2 Ω/2 + 2(1 − γ2) e−(1−γ2) Ω/2
}2
, (51)

whereas if either a p or a N∗ may be detected using, say,
a forward calorimeter, then we obtain for CD(cal)

e−Ω → 1
4

{
(1 + γ)4 e−(1+γ)2 Ω + (1 − γ)4 e−(1−γ)2 Ω

+ 2(1 − γ2)2 e−(1−γ2) Ω
}
. (52)

Note that when γ → 0, all the formulae (48)–(52) reduce
to the single-channel screening factor exp(−Ω), as indeed
they must.
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